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IntroductIon
The digestive tract’s structure and function reflect the feed-
ing habits of animals. Thus, the gut of predators is structured 
differently than that of herbivores and the digestive tracts of 
herbivores differ structurally, depending on the site of cellu-
lose digestion (1, 2). Another cause for difference in function 
between digestive systems relates to aspects determining the 
development of digestive function in the gut. For example, 
the rate of gut development, both anatomically and function-
ally, is different between species that immediately forage an 
adult type diet (precocial) and those that are fed processed 
foods or milk by parents (altricial) (1). Several bird species, 
including Gallus, proceed to forage immediately at hatch (3). 
This intake of an omnivorous diet requires the rapid adapta-

tion of the digestive tract to accommodate breakdown and 
absorption of complex food stuffs (1, 4, 5). Concomitant with 
the exposure to an adult-type diet, the intestinal tract of these 
birds immediately becomes inhabited by microflora (6-10). 
Interestingly, in Gallus sp., the major site for bacterial coloni-
zation is the large intestine, particularly the two cecal horns 
(2, 7, 9), and colonization occurs by rectal as well as by oral 
routes (7, 9, 10). Consequent to the rapid colonization of the 
gut by commensal bacteria, as well as the possible entry of 
pathogenic bacteria, a parallel rapid development of gut as-
sociated lymphoid tissue (GALT) is expected. Nevertheless, 
as we have shown in previous studies, the avian GALT is far 
from being mature during the rapid period of gut develop-
ment following hatch (11-15). Thus, while the gut-specific 
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A bst r act
Adaptive immunity is immature at birth in mammals and birds. Several measures have evolved to protect 
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during the process of egg formation, and continue to function in the hatchling until its own immune re-
sponse can take over. Here we briefly review these protective mechanisms and provide several new insights 
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adaptive immune response matures within two weeks post 
hatch (13), several innate processes, both antigen dependent 
and antigen independent, appear to be functional at hatch or 
immediately thereafter (11). In mammals, protection during 
critical periods of premature immunity is provided by mater-
nal protection in the form of maternal antibodies continu-
ously provided by milk. In the bird, however, such ongoing 
protection is unavailable. Hence, if maternal protection is to 
confer a certain degree of protection on the developing chick 
then these means need to be provided during the process of 
egg formation, and more importantly, continue to function in 
the hatchling until its own immune response can take over. 
The objective of this manuscript is to briefly review these 
protective mechanisms and to provide several new insights 
derived from our own research.

MEchAnIcAl And chEMIcAl 
protEctIon oF thE  
dIgEStIvE MucoSA

The gut mucosal surface (from the pylorus) is covered by 
microvillus simple columnar epithelium (enterocyte) that 
functions as a physical barrier as well as in digestion and 
absorption (16). The paracellular route is blocked by inter-
cellular tight junctions, and enterocytes express apical mem-
brane receptors specific for bacterial antigens, the activation 
of which leads to local immunity (16). Three other cell types 
contribute to local immunity: goblet cells, microfold (M) 
cells (Bockman& Cooper identified unique follicular asso-
ciated epithelial [FAE] cells in the cloacal bursa, and these, 
based similarity to the rabbit and mouse, were later designat-
ed as M cells (17, 18)) and Paneth cells; of these, only goblet 
cells have been unequivocally demonstrated in the digestive 
tract of birds. Goblet cells are columnar epithelial cells that 
are generated from the same progenitors as the enterocytes, 
and function as mucin-secretors (19, 20). Mucins, a group 
of heavily glycosylated proteins, have a central role in the 
protection of the mucosa against various pathogens (21-23). 
Secreted mucin adheres to the enterocyte surface in two lay-
ers – internal firm and external loose adherent layers (22). 
These layers impede the penetration capacity of microbes. 
Furthermore, mucins mimic cell ligands for bacterial recep-
tors thus blocking the binding capacity of bacteria to the 
cell surface prior to penetration (19). Further protection of 
the mucosa is sustained by dimeric IgA. This form of IgA is 

linked by an invariable J chain, and is protected against pro-
teolysis by a peptide, secretory component (SC), a remnant 
fragment of the polymeric Ig receptor, responsible for tran-
scytosis of dimeric IgA from the lamina propria to the gut 
lumen (16). Similar to mucin, dimeric IgA blocks adherence 
of bacteria to the cell surface. IgA is antigen specific and is 
the consequence of previous exposure of the lamina propria 
to gut-derived antigens (16).

dEvElopMEnt oF IMMunIt y In 
thE AvIAn dIgEStIvE trAct

This topic is briefly described here and readers are referred to 
our previous extensive reviews (12, 15). Essentially, the adap-
tive immune response in the avian gut is immature at hatch 
(13). While small lymphocyte numbers are present at hatch, 
they acquire full functionality within the first 10 days post-
hatch. During this period, specific protection is made available 
via maternal antibodies active both in serum and gut (Elad and 
Friedman, in preparation; Cohen and Friedman, in prepara-
tion). Even though B cell development during this period is 
very active (24), gut specific secretory IgA (sIgA) is still un-
detectable (25). Interestingly, the poly Ig receptor (pIgR) de-
velops in parallel with the IgA secretory system (Cohen and 
Friedman, in preparation). Innate immunity appears to be fully 
functional at hatch as expressed by numerous parameters, i.e. 
granulocytes, knockout (NK) cells, defensins and more (11). 

MAtErnAl protEctIon: coloStruM 
And ItS F unctIon In MAMMAlS

Adaptive immunity is immature at birth in mammals and 
birds. This leaves the neonate or hatchling exposed to numer-
ous infective agents. Several measures evolved to protect the 
neonate during this critical period, one of which is totally de-
pendent upon the adaptive immune response of the maternal 
parent – maternal antibodies (26, 27). These antibodies reflect 
the adaptive immunity experience of the mother, and are 
transferred to the developing offspring. In mammals, there 
are two mechanisms of antibody transfer – via the placenta 
and via milk, particularly colostrum (28). Placental transport 
of antibodies is possible in mammals with a hemochorial pla-
centa, such as rodents (29) and mammals (30). This transport 
allows selective transport of IgG via a unique Fc receptor 
(FcRn) (31, 32) and occurs during embryonic development. 
In mammals with different placental structure, i.e. ruminants, 
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dogs, cats, horses or pigs, placental transfer of antibodies is 
very limited to non-existent (33). 

In all mammals, plasma cells migrate to the mammary 
gland lamina propria during pregnancy (34); this directed mi-
gration of plasma cells appears to be controlled by pregnancy 
hormones – progesterone, prolactin and estradiol (35, 36). 
These hormones also regulate the expression of the pIgR in 
mammary gland secretory epithelium (37). Thus, pregnancy 
leads to increase of antibody secretion into mammary alveoli 
(38). Interestingly, the main sources of the migrating plasma 
cells are mucosal lamina propriae a fact that guarantees pro-
tection based on active maternal immune experience (16). 
Colostrum-rich antibodies and milk-enriched antibodies are 
provided to the suckling neonate during the immediate post-
partum period (39, 40). As digestive proteolytic processes are 
immature in the under-developed gut, whole proteins – in-
cluding antibodies – are easily absorbed (40). Moreover, co-
lostrum trypsin inhibitors as well as high absorption capacity 
of enterocytes, further promote absorption of intact proteins 
(40). High intestinal wall permeability is drastically reduced 
within 24-48 post parturition due to commensal bacterial 
colonization and gut maturation (33, 39). The cardinal im-
portance of colostrum/milk derived antibodies for neonate 
protection is demonstrated by uniform immune failure lead-
ing to morbidity and mortality consequent to early infection 
(41, 42). The gut continues to be passively protected by mater-
nal dimeric IgA (and IgG in several species) that is continu-
ously provided by milk (43, 44). The milk-derived antibodies 
neutralize enteral pathogens, thus denying contact between 
pathogen and gut wall (immune exclusion) (44). 

MAtErnAl protEctIon: thE Egg AS 
A MAtErnAl AntIBody rESErvoIr

The protective strategy in egg-laying species is more compli-
cated than that in mammals. While protection of the devel-
oping embryo in mammals is made possible via direct ana-
tomical contact, the developing embryo in the egg has no 
such contact with its hen. Consequently, protective maternal 
strategy in birds (and other egg laying species) must provide 
means to protect the egg, the embryo and the hatchling. 
Strategies to protect the egg and embryo are not within the 
scope of this review and will be discussed elsewhere (Bar-
Shira et al., in preparation). Strategies to protect the hatch-
ling, as in the mammal, rely on maternal antibodies, but must 
take account of the chick’s different life style: the hatchling 

immediately proceeds to forage adult type food (see above) 
and at the same time continues to use nutrients present in 
residual yolk up to 7 days post hatch (45, 46). This lifestyle 
leads to a rapid rate of intestinal development that has rami-
fications for protein absorbance (47)

Maternal protection in the form of specific antibodies in 
Gallus is absolutely dependent upon the presence of protec-
tive antibodies in the egg. Previous studies have shown that 
the chicken egg contains all 3 known antibody types: IgY is 
prevalent in the yolk, while IgM and IgA are predominantly 
found in the egg white (48-50). The differential placement of 
the antibody types is a consequence of the different mecha-
nisms responsible for transferring antibodies to the egg (50). 
IgY, present in the hen’s serum is transferred to the develop-
ing yolk via transporters in the follicular epithelium, while 
IgA and IgM are transferred to the developing albumen as 
it passes down the oviduct. To date, IgY transporters in the 
chicken have only been described in the yolk sac (51-53), and 
it is unknown whether follicular transporters are the same 
or similar. The IgA transporter is probably the avian pIgR 
that has been described in the gut, with the SC derivative 
described in both gut and oviduct (54-56). The source of egg 
white IgM and IgA are mucosal plasma cells present in the 
lamina propria of the oviduct, adjacent to the epithelial basal 
lamina (Elad and Friedman, unpublished; (57, 58)). Similar 
to the mammal, the presence of oviduct plasma cells is under 
endocrine control, particularly estradiol (59, 60). However, 
while this control is periodic in the mammal, it is quite con-
stant in the laying period of hens (61). 

Thus, the non-fertilized egg contains all three isotypes 
in different compartments. IgY is mainly present in the yolk 
(20-25mg/ml yolk). IgA and IgM are only found in the egg 
white at 0.7 and 0.15 mg/ml respectively (48-50). The distri-
bution of antibody isotypes in the fertilized egg changes sig-
nificantly with the development of the embryo. At first, anti-
body distribution is identical to that of the non-fertilized egg 
(49). By the third day of incubation (E3) the amnion, chorion 
and allantoic membranes are formed: the former encloses the 
embryo immersed in the amniotic fluid. The amniotic fluid 
nourishes the embryo and is a site for excretion. The chorion 
membrane develops till it coats the entire inner surface of the 
egg shell, and functions as an oxygen exchanger. The alan-
toic membrane contains developing blood vessels and is the 
primary site for hematopoiesis. By the third day of incuba-
tion (E9) the allantois converges with the chorion, and the 
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subsequent chorio-allantoic membrane continues to function 
in oxygen exchange and water absorption. By E11, following 
the rupture of the sero-amniotic raphe, free exchange of con-
tents (and antibody isotypes) occurs between albumen and 
yolk (49, 62). Consequently, from E12 IgA is found in the 
sero-amniotic fluid and yolk (see Fig. 1 and (63)). 

MAtErnAl IgA In thE chIcK gu t: 
ExtEndIng ItS lIFE SpAn And 

F unctIonAlIt y
The mechanisms of antibody absorption or transfer to the 
embryo also differ between isotypes. IgY was thought to be 
absorbed via the hepatic portal system or via the vitelline cir-
culation (50), however the recent discovery of an IgY trans-
porter on the yolk sac (52, 53) might indicate direct IgY up-
take from the yolk. IgY is the only maternal isotype present 
in the embryo’s blood system (49). As yolk is delivered to the 
embryonic digestive tract, all three isotypes are found in the 
developing gut as well. While they might serve as nutritional 
proteins, it is possible that they serve to protect the gut lumen 
as well (49, 63). It is interesting to note that while maternal 
IgA was located throughout the E21 digestive tract, includ-
ing the lumen of the cloacal bursa, no maternal IgA was 
detected in the E21 respiratory airways, thus substantiating 
the premise that the yolk is the sole source of maternal IgA 
(Adlershtein-Cohen, Cohen and Friedman, in preparation). 

Thus, antibody distribution in the embryo gut and serum 
provides an elegant means for specific maternal protection. 
While maternal serum antibodies continue to protect the 

chick for several weeks (depending on antigen) (64, 65), the ef-
fective protective period of gut lumen antibodies is unknown. 
Furthermore, the mechanism that allows persistence of these 
antibodies until the emergence of an endogenous source of 
protective antibodies is also by large unknown. To gain in-
sight into these issues we initially confirmed the absence of 

Figure 1: IgA in yolk and albumen of fertilized and non-fertilized 
eggs at different stages of incubation (Elad and Friedman, unpublished). Figure 2: Cross section of E19 duodenum heavily stained to show 

specific anti-BSA specific IgA. IgA is contained in a paste-like 
substance coating the external apical face of enterocytes. This substance 
coats entire villi down to the crypt areas. No IgA is present in lamina 
propria, mucosa or other subepithelial areas, indicating absence of 

enterocyte uptake (Elad and Friedman, unpublished)

Figure 3: High magnification low-level staining of E19 duodenum 
for anti-porcine immunoglobulin (Pig) IgA. A thin coating of IgA is 
apparent on external surfaces of enterocytes (red arrow). Goblet cells 
(black arrows) contain different quantities of IgA; this content has a 

droplet appearance (Elad and Friedman, unpublished).
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any IgA gene expression during E17 up to PH7. Thus, IgA 
in the gut was most probably maternal. To further insure this, 
we immunized hens with protein antigens (bovine serum al-
bumin – BSA and porcine immunoglobulin -PIg), and de-
tected maternal anti-protein specific IgA. The results of these 
studies have led us to describe a new mechanism for maternal 
IgA protection in the digestive tract of the post-hatch chick.

By following anti-BSA and anti-PIg specific IgA we 
were able to confirm the IgA transport pathway described 
above, namely oviduct – albumen – yolk. Specific immuno-
histochemical studies revealed a thin paste-like coating of 
IgA on all apical surfaces of enterocytes. Most interestingly, 
mature goblet cells were positively stained for BSA or PIg 
specific IgA (Figures 2 & 3).

IgA was not detected in any sub-epithelial compartment 
at this time, nor were there any IgA positive plasma cells. 
Taken together it appears that yolk IgA is immersed within 
a mucin-like substance that acts to associate IgA with en-
terocyte surfaces and that this IgA does not undergo uptake. 
Furthermore, the hitherto non-documented presence of IgA 
in goblet cells indicates a mechanism for controlled release 
of IgA and its temporal preservation. 

IgA, as a free protein in the intestinal lumen, faces two 
possible fates, degradation by proteolytic enzymes and flush 
out with movement of the intestinal content. The latter might 
be considered the biological objective of antigen-bound IgA, 
though it would be a waste of a useful resource if the IgA is 
of limited supply or if it is antigen non-bound. Thus, mea-
sures contributing towards the extension of IgA lifetime in 
the gut would serve to alleviate IgA depletion in the immu-
nologically immature chick. Thus, detecting maternal IgA 
in a mucin coated surface and in goblet cell cytoplasm both 
indicate a functional connection. Goblet cells are considered 
as single cell exocrine glands that are present in numerous 
epithelial linings (20). The mucus layer coating the gastroin-
testinal tract is the front line of innate host defence, largely 
because of the secretory products of intestinal goblet cells. 
Goblet cells synthesize secretory mucin glycoproteins and 
bioactive molecules such as epithelial membrane-bound mu-
cins, trefoil factor peptides, resistin-like molecule beta, and 
Fc-gamma binding protein (22). Colonization by commensal 
microbes is limited to an outer "loose" mucus layer, and inter-
acts with the diverse oligosaccharides of mucin glycoproteins, 
whereas an "inner" adherent mucus layer is largely devoid 
of bacteria (22). The interaction between microbes and the 

mucin layer has been described in both mammals (21, 22) 
and the chicken (23). Secretory IgA in the mammal has been 
reported to form a mesh within the mucin layer, thus allow-
ing IgA to bind adherent enteral pathogens (66). The IgA 
layer described in our studies conforms to these mucin layers.

The excretion rate of goblet cells is regulated by several 
regulators (nerve excitation, hormones, lipids and inflamma-
tory cytokines) (19, 20, 22, 23). Thus increased excretion, com-
pound exocytosis, leads to the thickening of the mucin layer and 
increases its protective ability. Steady state secretion, or con-
tinuous secretion, occurs under normal non-stressful condi-
tions and constantly replenishes the mucin layers (19). Steady 
state secretion of mucin-containing IgA would provide a con-
stant source of IgA overtime (until a source of endogenic IgA 
becomes available – in the chick, 7 d post-hatch). Thus im-
mersing IgA in mucin protects it from degradation and its 
uptake by goblet cells extends its effective lifetime.

While the presence of IgA in mucin has been demon-
strated in mammals (20), a putative mechanism by which 
goblet cells uptake intestinal substances is hitherto unknown. 
Use of an analog of the pIgR seems unlikely for several rea-
sons. First, pIgR is a basal and lateral membrane receptor; 
there are no reports to date describing it as an apical mem-
brane receptor. Second, there is no report to date describ-
ing pIgR in goblet cells. Third, maternal IgA is dimeric and 
contains a SC, thus it is highly unlikely, if not impossible to 
undergo uptake a second time with the identical receptor. 

The observation that maternal IgA might be protected 
by the mucin secretory system, thus extending its effective 
functionality till an endogenic source of IgA becomes avail-
able is of importance in the development of oral vaccines. 
Oral vaccines are of major advantage when immunizing large 
populations. These vaccines need to evoke immunity rather 
than oral tolerance (67), and they should not block maternal 
antibodies (68). The observation that maternal antibodies 
interfere with developing adaptive immune responses fol-
lowing immunization of chicks is well documented (64, 69); 
furthermore, the presence of maternal antibodies is an im-
portant consideration for the timing of commercial vaccina-
tion (65, 70). Thus, the presence of antigen specific maternal 
IgA in the embryonic and post hatch digestive tracts, might 
render oral immunization during this period to be counter-
productive, for the immunizing antigen might be blocked by 
resident maternal IgA, thus both depleting maternal IgA and 
limiting the effective priming dose of the vaccine. 
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