Virulence Characterization of *Dichelobacter nodosus* from Clinical Cases of Ovine Footrot

Division of Veterinary Microbiology and Immunology, FVSc and AH, SKUAST-J, Jammu, R.S. Pura. 181102.

* Corresponding author: Dr. Irfan Ahmad Mir, Division of Veterinary Microbiology and Immunology, SKUAST-Jammu, 181102, Kashmir, India. Email: mirirfan441@gmail.com

ABSTRACT

Dichelobacter nodosus from ovine footrot was characterized for *pgr* and *intA* genes. Out of 260 samples collected from clinical cases of ovine footrot only 107 were found positive for *D. nodosus* by species-specific 16S rRNA-PCR. The overall prevalence of footrot based on clinical symptoms was estimated to be 10.57%. Serological diversity studies based on *fimA* gene revealed the presence of two serogroups of *D. nodosus* viz. B and E only. Out of 107 *D. nodosus* positive samples, 101 (94.39%) were positive for serogroup B, while remaining six (5.60%) samples showed the presence of serogroup E. None of the samples revealed mixed infection with two or more serogroups. The samples positive for 16S rRNA were subjected to detection of the *intA* genes. A total of 67 (62.61%) samples were found to carry the *intA* gene. Since 63.36% of serogroup B positive samples and 50.00% of serogroup E positive samples carried *intA* gene, there appeared to be no bias towards either of the serogroups. Ten *intA* positive and 10 *intA* negative samples were randomly selected and subjected to detection of *pgr* genes. *pgrA* gene was present in all the *intA* positive and *intA* negative samples screened, suggesting no correlation between the occurrence of the *intA* gene and *pgrA* variants. However, *pgr* analysis appeared much more reliable than *intA* gene analysis for detection of virulent strains of *D. nodosus*. Considerable heterogeneity in *pgrA* variants offers significant potential as a molecular tool in future epidemiological studies.

Keywords: *D. nodosus*; Serogroups; *intA* gene; *pgrA* gene; Footot; Sheep; Goats; Caprine; Ovine.

INTRODUCTION

Footrot caused by *Dichelobacter nodosus* (*D. nodosus*) is a highly contagious disease of sheep and goats characterized by lameness, ulceration and sometimes separation of the hoof from the foot. Although the disease is of world-wide distribution, areas with temperate climate are often affected with significant impact on sheep farming. The clinical manifestations of footrot are dependent on both environmental conditions and the virulence of *D. nodosus* strain (1). Laboratory tests like protease thermostability /gelatin-gel test (2), detection of *intA* (3) and detection of genomic islands *vap* and *vrl* (4) have been developed to classify virulence of *D. nodosus* isolates. But these tests do not always correlate, suggesting that either they do not test the absolute markers for virulence or that virulence is complex and linked to more than one process. However, only recently a gene encoding a putative large, repetitive secreted protein designated as *pgr* (proline-glycine repeats) was found in virulent strains of *D. nodosus*, suggesting that this gene might encode a virulence factor that could be involved in adhesion to the extracellular matrix (5). Recently, Calvo-Bado et al. (6) determined the diversity of the *pgr* gene and reported its two variants, *pgrA*, and *pgrB* based on sequence analysis of the genes.

The aim of the current study was to determine the prevalence of footrot in sheep, to characterize *D. nodosus* on the basis of virulence markers viz. *intA* gene and *pgr* gene
variants, correlate these two and to determine a better marker for virulence determination in *D. nodosus*. Moreover, sero-grouping was also carried out to ascertain the predominant serogroup in Kashmir.

MATERIALS AND METHODS

A total of 2458 sheep from private flocks of south Kashmir were clinically screened for footrot and 260 swab samples were collected randomly from clinically affected sheep. The samples were collected from active lesions that developed between the horn of the hoof and the sensitive underlying tissues.

DNA Extraction

Suspension of the material present on the swabs was made in 100 µl of sterile phosphate buffered saline (PBS) using 1.5 ml tubes by gentle vortexing. The suspension was allowed to boil for 5 min followed by chilling on ice for 10 min and centrifugation at 10,000g for 1 min. The supernatant was used as DNA template for PCR reaction.

Detection of 16S rRNA gene by PCR

PCR amplifications were performed in 25 µl in 0.2 ml thin walled PCR tubes (Eppendorf, Germany). The PCR mixture contained a final concentration of 10 mM Tris–HCl, pH 9.0, 50 mM KCl, 3 mM MgCl₂, 0.5 mM concentration of each primer, 0.2 mM concentrations of each 20-deoxynucleotide triphosphate and 1.0 U of Taq DNA polymerase (Promega Madison WI, USA). Oligonucleotide primers (Table 1) were also procured from Chromos Biotech Pvt. Ltd, Bengaluru, India.

The amplification cycles in a thermal cycler (Eppendorf, Germany) was carried out as per the cycling condition described earlier (7). Two microliters of sterilized distilled water served as negative control. The PCR products were electrophoresed on 0.8% agarose gels, stained with ethidium bromide and visualized under ultraviolet (UV) illumination and photographed with gel documentation system (GDS 8000 system, UVP, UK).

Serogrouping of *D. nodosus*

Samples positive by 16S rRNA were subjected to multiplex PCR using *fimA* gene specific common forward primer and nine (A–I) serogroup specific reverse primers (8). All the conditions were kept similar to those for 16S rRNA except an increased concentration of forward primer (2.5 times) as compared to reverse primers. The nucleotide sequence of primers used for serogrouping is provided in Table 2.

Detection of Virulence associated *intA* Gene

Samples positive for 16S rRNA were screened for the presence of *intA* gene as described previously (3) with minor modifications. The concentration of primers (5’ ACA TCA TGC GAC TCA CTG AC 3’ and 5’ TCT CTG GTC GGT TTC CAC TAC 3’) was increased 2.5 times.

Table 1: Details of primers used for detection *D. nodosus*.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer sequence (5’ – 3’)</th>
<th>Target gene</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>CGGGGTTATGTAGCTTGC</td>
<td>16S rRNA</td>
<td>La Fontaine et al. (7)</td>
</tr>
<tr>
<td>Reverse</td>
<td>TCGTACCAGATTTCTACCCAACCT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Details of primers used for serogrouping of *D. nodosus*.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer sequence (5’ – 3’)</th>
<th>Target gene</th>
<th>Serogroup</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP</td>
<td>CCTTAATCGAACTCATGATTTG</td>
<td>fimA</td>
<td>A</td>
<td>Dhungyel et al. (8)</td>
</tr>
<tr>
<td>RA</td>
<td>AGTTTCCGCTTTACATTATTT</td>
<td>fimA</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>RB</td>
<td>CGGATCGCCAGCTTCTGTTTT</td>
<td>fimA</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>AGAAGTGCCTTTGCGTATTT</td>
<td>fimA</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>RD</td>
<td>TGCAACAATATTTCTCCATTC</td>
<td>fimA</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>RE</td>
<td>CACTTTGGATATCGAATCCTGG</td>
<td>fimA</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td>ACTGATTTCCGCTAGACG</td>
<td>fimA</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>RG</td>
<td>CTTAGGGGTAAGTCTGCAAG</td>
<td>fimA</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>RH</td>
<td>TGAACAAGACCAAGTGAC</td>
<td>fimA</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>RI</td>
<td>CGATGGGTCAGATCTGGACC</td>
<td>fimA</td>
<td>I</td>
<td></td>
</tr>
</tbody>
</table>
CGT ACA AT 3’) was 0.5 mM while the amplification was carried out at initial denaturation at 94°C for 2 min followed by 31 cycles of denaturation at 94°C for 1.5 min, annealing at 60°C 1 min and extension at 72°C for 2 min. Final extension was carried out at 72°C for 5 min.

The amplicons obtained by using \textit{intA} gene primers were purified using MinElute PCR Purification Kit (Qiagen, Hilden, Germany) as per the manufacturer’s instructions and were sequenced commercially by Chromous Biotech, Bengaluru, India.

\textbf{PCR assay to detect \textit{pgrA} and \textit{pgrB} variants}

Twenty samples (ten \textit{intA} positive and ten \textit{intA} negative) were randomly selected and subjected to PCR for detection of \textit{pgrA} and \textit{pgrB} variants as described (6) using a final concentration of 10mM Tris-HCl, 50mM KCl, 3mM MgCl\textsubscript{2}, 0.2mM concentrations of each dNTP and 1U of \textit{Taq} DNA polymerase (Promega Madison WI, USA). The amplification was carried at initial denaturation at 95°C for 2 min followed by 34 cycles of 95°C for 1 min, 60°C (for \textit{pgrA}) 55°C (\textit{pgrB}) for 45 sec and 72°C for 2 min. Final extension was carried out at 72°C for 5 min. The concentration of \textit{pgrA} primers (5-CCTGCACCATGCTTGTTAAA-3 and 5-GCTGTTGCTGTGGTTTGG CTAT-3) and \textit{pgrB} primers (5-AKCATCRGGAAGGTGA-3 and 5-GACGGCATCAGCAGCA-3) was 0.5 mM.

The amplicons obtained by using \textit{pgrA} gene primers were purified and sequenced commercially.

\textbf{RESULTS AND DISCUSSION}

Out of a total of 2458 sheep screened, 260 exhibited clinical signs characteristic of footrot thus indicating an overall prevalence of 10.57%. However, a lower prevalence has been reported in the United Kingdom (9, 10) and Bhutan (11). Out of these 260 samples only 107 were found positive for \textit{D. nodosus} by PCR (Figure 1). The probable reason for this low detection rate by PCR could be due to the crude method of DNA extraction or because the samples were taken from animals in the process of healing. Moreover, the samples could not be taken from deeper areas of skin and hoof where anaerobic conditions favor the growth of \textit{D. nodosus}.

The predominant serogroup was serogroup B found in

\textbf{Figure 1:} PCR Gel Image carried out for the detection of \textit{D. nodosus} based on species-specific 16S rRNA gene. L1: Negative control having distilled water as template, L2-L5: foot-rot suspected samples taken from clinically affected animals showing an amplified product of 783 bp. L6: A foot-rot negative sample, L7: A Positive control having reference \textit{D. nodosus} culture, Lane 8: 100 bp ladder.

101 (94.39%) samples. The only other serogroup detected was serogroup E (5.60%) (Figure 2). However, serogroup G and serogroup I could not be detected in the present study which is in contrast to studies carried out by Rather et al. (12). The predominance of serogroup B has been reported in various countries viz. Australia (13), Britain (14), New Zealand (15) and Bhutan (11). None of the samples were found positive for more than one serogroup which is quite contrary to a previous report (12) which reported the occurrence of a mixed infection in 31% of samples.

Out of 107 PCR positive samples, 67 (62.61%) were positive for intA gene. Similar results have been found by Rather et al. (12) who reported that 61.88% isolates from central Kashmir were intA positive thus designated as virulent. The distribution intA gene in both the serogroups (B and E) was almost equal, thus indicating no bias towards any serogroup. PCR-based test for the detection of intA was developed and validated by Cheetam et al. (16) who reported having designed primers to amplify a 530 bp fragment of the intA gene. However, we used the same pair of primers and could amplify only 501bp amplicon as shown in Figure 3. (GenBank accession number JN574475).

The diversity of pgrA gene was studied with the aim to exploit it for detection of benign and virulent strains of D. nodosus and for further comparison with intA. Out of twenty samples (10 intA positive and 10 intA negative) selected randomly, all were positive for pgrA as shown in Figure 4 and none could be found positive for pgrB. Unexpectedly the pgrA variant was detected equivocally from all the intA positive and intA negative samples. Thus no conclusion of a correlation between the occurrence of intA gene and pgrA variant could be made.

Since all the samples were taken from clinically affected animals exhibiting a virulent form of the disease and 37.31% samples revealed the presence of pgrA gene without the intA gene, it can be concluded that pgrA analysis is a much more reliable parameter than intA gene as far as the virulence of D. nodosus is concerned. Furthermore, we recorded considerable heterogeneity in the pgrA variant thus offering significant potential as a molecular tool in epidemiological studies. (GenBank accession no of pgrA gene JN601141)

ACKNOWLEDGEMENT

The authors are grateful to the DBT-New Delhi, India for providing funds under the project Development of Non-Culture Diagnostic Techniques for Dichelobacter nodosus to carry out the present research.

Figure 3: Gel image of intA gene PCR of D. nodosus. L1: A positive reference D. nodosus showing amplified product of 501 bp representing intA gene, L2: A footrot clinical sample showing presence of intA gene (501 bp), L3: A Negative control having distilled water as template, L4: A footrot sample not having intA gene, L5: 100 bp ladder.

Figure 4: Gel image of pgrA gene PCR for D. nodosus. L1: 100 bp ladder. L2 & L3: A positive reference culture showing variable size of pgrA gene, L4 & L5: two footrot samples showing the variability in size of pgrA gene. L6: A Negative Control having distilled water as template.
REFERENCES

